# **Cloud Chemistry in Substellar Atmospheres**

**Channon Visscher** SSI CEPS Tele-Talk 17 June 2016

## Outline

- overview of substellar objects
- major chemical processes
  - equilibrium processes
  - disequilibrium processes
  - role of cloud formation



"one gets such wholesale returns of conjecture out of such a trifling investment of fact"

#### **Substellar objects**

| object (class) | mass                | properties                               |
|----------------|---------------------|------------------------------------------|
| stars          | > 75 M <sub>J</sub> | fusion in interior                       |
| brown dwarfs   | 13 to $75M_{\rm J}$ | temporary D fusion                       |
| L dwarfs       |                     | warmest BDs, C as CO                     |
| T dwarfs       |                     | CH4 in spectra                           |
| Y dwarfs       |                     | lower <i>T<sub>eff</sub></i> (300-600 K) |
| planets        | < 13 M <sub>J</sub> | no fusion                                |

- first approximation: solar abundances of heavy elements (> He)
- expect similar chemical behavior for similar *P T* conditions

#### **Substellar objects**



Chen & Kipping 2016

#### **Substellar objects**

• expect similar chemical behavior for similar *P* - *T* conditions



#### **Low-mass exoplanets**

• may also possess H/He envelope



Lissauer et al 2011

#### **Transit observations**



- provide constraints for theoretical models:
  - bulk density, atmospheric composition & structure
  - H, Na, H<sub>2</sub>O, CO, CO<sub>2</sub>, CH<sub>4</sub> have all been detected

transit geometry

## **Directly-imaged planets**



HR 8799 system; spectra of HR 8799c, Konopacky et al 2013

### Model approach: what influences properties?



model-data comparison (left); atmospheric chemistry (right) for GJ 436b; Moses, Line, Visscher et al 2013

## **Chemical regimes in exoplanet atmospheres**

- chemical equilibrium is a useful first approximation, but substellar atmospheres are not in complete equilibrium
- may see three chemical regimes:
  - equilibrium, quench, photochemical



chemistry on HD 189733b; Moses, Visscher et al 2010; Visscher and Moses 2011

## **Orbit-induced variations in chemistry**

- for close-in, eccentric orbits
  - can chemistry keep up with changes in temperature?
  - *not at high altitudes (P < 4 bar for HAT-P-2b)*



orbit of HAT-P-2b (left); Visscher 2012; see also Iro & Deming 2012, Lewis et al 2013

## **Equilibrium condensation chemistry**

 condensation curves defined by stability

Fe(gas) = Fe(met) $a_{Fe(met)} = KP_{Fe}$ 

- intersection between *P-T* profile and condensation curve defines cloud base
- *Fe metal & silicate clouds are consistent with Jupiter and brown dwarf observations*



#### Metal rain virga?



based upon Visscher et al 2010 results; Ackerman & Marley 2001 clouds with "sedimentation factor"

## **Equilibrium condensation chemistry**

- Jupiter: observed H<sub>2</sub>S requires deep Fe removal
- presence of GeH4, absence of SiH, even though Asi>>AGe
- detection of Na, K, in brown dwarfs implies Al, Si removal
- <u>disappearance of Na, Fe, Mg, Si, Ca features in later BD spectral types</u>
- silicate spectral features in brown dwarfs and hot exoplanets



Kirkpatrick (2005) spectral classification of L and T brown dwarfs; cf. Visscher et al 2010

## **Clouds on planets and brown dwarfs**

- strongly affect observational properties:
  - introduce condensed particles (reflection, absorption, scattering)
  - remove atoms and molecules from the gas phase



*Iyer et al (2016): clouds on exoplanets obscure H*<sub>2</sub>*O features in transmission spectra* 

## **Clouds on planets and brown dwarfs**

- strongly affect observational properties:
  - introduce condensed particles (reflection, absorption, scattering)
  - remove atoms and molecules from the gas phase



Lodders 2004

#### **Relative cloud masses**

| condensate                              | relative cloud mass |
|-----------------------------------------|---------------------|
| H <sub>2</sub> O                        | 87386               |
| CH <sub>4</sub>                         | 50627               |
| MgSiO <sub>3</sub> (enstatite)          | 43838               |
| Fe metal                                | 20853               |
| NH <sub>3</sub>                         | 11644               |
| NH <sub>4</sub> SH                      | 9241                |
| $Mg_2SiO_4$ (forsterite)                | 1254                |
| Na <sub>2</sub> S                       | 1000                |
| Ca, Al, Ti silicates and oxides (total) | 360                 |
| MnS                                     | 355                 |
| Cr metal                                | 298                 |
| KCl                                     | 123                 |
| ZnS                                     | 53                  |
| NH <sub>4</sub> Cl                      | 37                  |
| other chlorides                         | 1                   |

Assuming element abundance ratios are solar (Lodders 2003) and complete condensation

## **Clouds on cool brown dwarfs**

- exploring effects of "minor" cloud species on brown dwarfs
  - Morley et al (2012) after Ackerman & Marley 2001 cloud models
- effect consistent with color-magnitude trends for cool brown dwarfs



Morley, Fortney, Marley, Visscher, et al. (2012); brightness temperatures & color-color diagram

#### Hazes on the "Super Earth" GJ 1214b

- "minor" clouds such as chlorides and sulfides
  - hazes may help explain "flat" spectra of GJ1214b
  - 6.5 Earth mass, 0.014 AU orbit (M type star)



Visscher et al 2006; Morley, Visscher, et al 2012, 2013; see Kreidberg et al 2014

#### **Clouds on hot exoplanets: HR 8799c**

- young giant planets: similar atmospheric temperatures as brown dwarfs
  - Fe and Mg-silicate clouds may play a role on HR 8799-like planets
  - HR 8799c: 7.1 *M*<sub>J</sub>, 1.3 *R*<sub>J</sub>, 38 AU, orbiting young A/F star



HR 8799 system; Marley 2013, after Lodders 2004

#### **Clouds on hot exoplanets: high-T clouds**

• hot exoplanet spectra may be influenced by Ca-Al-Ti clouds



## **Outstanding questions (ongoing & future work)**

- what chemical mechanisms are involved in condensate formation?
- what are the **kinetics** of cloud formation?
- how might mixing & orbital effects influence cloud formation?
- how does variable **cloud coverage** influence spectra?





*Iro et al 2005; dayside vs. nightside condensation of Na<sub>2</sub>S; cloud gaps on Jupiter* 

